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Proof. (See Djokovi¢ and Miller [77].)
Summing up, the lattice of possible regular subgroups is as shown in Fig. § (s
Djokovi¢ and Miller [77]). Each inclusion is of index 2 except a. Thus we can ¢
up the lattice using the normality trick except for inclusion a. For inclusion a we né
on the fact that the graph is a covering of Heawood’s graph. 1
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Universal Classes of Hash Functions
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J. LAWRENCE CARTER AND MARK N. WEGMAN

Remark. It has been brought to the attention of the author that certain equivalet
or related results appear in the literature. In particular, in Hedrlin and Pultr [66] s
ductions are used to prove certain algebraic reducibilities. These constructions can be
used to prove Theorem 2, Using Theorems 1 and 2 of Babai and Lovisz [73] and sis
properties of the symmetric group one can prove Theorems 4 and 6 respectively.
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L. This paper gives an input independent average linear time algorithm for storage and

. retrieval on keys. The algorithm makes a random choice of hash function from a suitable

class of hash functions. Given any sequence of inputs the expected time (averaging over all

functions in the class) to store and retrieve elements is linear in the length of the sequence.

It 1s a pleasure to thank . Angluin, L. Carter, D. Corneil, D. Djokovié, D. Kirkpatrick, L. : & * The number of references to the data base required by the algorithm for any input is

T. Ralston, C. Thomassen, and W. Tutte for their most helpful discussions and comments. * e "“ extremely close to the theoretical minimum for any possible hash function with randomly

distributed inputs. We present three suitable classes of hash functions which also can be

. evaluated rapidly. The ability to analyze the cost of storage and retrieval without worrying

sbout the distribution of the input allows as corollaries improvements on the bounds of
several algorithms.
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144 CARTER AND WEGMAN UNIVERSAL CLASSES OF HASH FUNCTIONS 145

B (3) If the program is presented with a worst-case input, there is no way to avoid -'=_.*-:1 the definition constrains the behavior of H only on pairs of elements of A. It turns

el L the resulting poor performance. However, if there were a class of algorithms to chooss & mt that this is powerful enough for many purposes, as the propositions of this section
from and the program could recognize when a particular algorithm was running slo* sest. However, for some applications of hashing, it is desirable to have a class of
on a given input, then it could possibly choose a different algorithm. tions which distribute larger subsets of 4 in a uniform manner. This may be the
‘mbject of a future paper.

'~ Proposition | shows that the bound on 8g(x, y) in the definition of universal, is tight
_when | A | is much larger than | B |. Notice that in most applications of hashing, | 4 |
bndﬂ:d much larger than | B |. For example, a compiler might typically handle 1000
3 .inbl:s from a class of all possible 7 character identifiers. A reasonable choice for B
“would therefore be 1000, while | 4 | is 26".

e In this paper, we apply these notions to the use of hashing for storage and retriﬂl,-'
% 5 and suggest that a class of hash functions be used. We show that if the class of functioss 3¢
is chosen properly, then the average performance of the program on any input will be
comparable to the performance of a single function constructed with knowledge of the ¥
input. We present several classes of hash functions which insure that every sample
chosen from the input space will be distributed evenly by enough of the functioss
to compensate for the poor performance of the algorithm when an unlucky choice of - " ProrosITION |. Given any collection H of hash functions (not necessarily universaly),
function i1s made. | exist x, y € A such that

A brief outline of our paper follows. After introducing some notation, we deﬁntl 3
property of classes of functions: universal, . We show that any class of functions l:hﬂl
universal, has the desired properties. We then exhibit several universal, classes of fune- |

tions whth can be evaluated easily. Finally we give several examples of the use ufthtl. '
functions.

|H| |1H|

A
g

Proof. In the proof, we first derive a lower bound on the number of collisions under
function in H 8,(A, A), then use this to give a lower bound on the total number
' of collisions under all functions 84(4, 4), and finally use the pigeon hole principle
hmnclude there must be two elements of 4 which collide under | 4 | of the functions.

- L leta=|A4|,b=|B] and fe H. For each i € B, let A, be the set of elements of A

5
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,,5;, If Sis aset, | S| will denote the number of elements in S. If x is a real number, theas ' ich are mapped into 7 by f, and let a; = | A;|. 844, Aj) = 0 fori # jsince elements
,3 ;ﬁ [x] means the least integer —>x. If x and y are bit strings, then x (® y is the exclusive - 4 J!‘ are mapped into i, and therefore cannot collide with elements fl'ﬂ::ll 4. HﬂWﬂ"';f.
T'Ej | of x and y. Z, will represent the integers mod n. All hash functions map a set 4 inw 3§ & h element of 4, collides with every other element of 4, , and s0 8,(4,, 4) = a(a; — )
: ?’g ' a set B. We will always assume | A | > | B|. 4 is sometimes called the set of pe ;;; 8, 8{(A, A) = Lien Lien 84(Ai, 4y) = Eus 8/(A;, Ai) = Lien (a® — a;). It is known
{ !"Er *' keys, and B the set of indices. If f is a hash function and x, y € 4, we define 8 ghat this summation is minimized when the a;’s are of the same size, that is, when g, = alb
L each i B. Thus, for each fe H, 8,(A, A) > b((a/b)* — aJb) = a¥(1/b — 1/a).

- Taking the sum over the | H | functions in H, we obtain 8y(4, 4) = a* | H|(1/b — 1/a).
g ﬂ'h: 84(A, A) on the left side of this equation is the sum of the & terms of the form
.j_;;___ y), where x,y€ A. When x =y, 8y(x,y) = 0. Thus, the sum of fewer than f
If 8,(x, v) = 1, then we say that x and y collide under f. If f, x or y is replaced in /s, A & & non-zero terms is a® | H |(1/b — 1/a). The pigeon hole principlesimplies there exist e
by a set, we sum over all the elements in the set. Thus, if H is a collection of hash fu ?iye A with x # y such that 84(x,y) > | H|(1/b — 1/a). |}

tions, x € 4 and SC A then 3,(x, 5) means 3 .i “In the remainder of this section, we derive consequences of the definition of universal, .

Y Y 84x, ). | r“"; The results are not particularly deep but are intended to demonstrate the usefulness
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ey of 2 universal, class.
+Q apphcauun of hash functions is to implement an associative memory. Briefly,
Notice that the order of summation does not matter. ' mtm memory can perform the operations: Store (Key, Data), which stores
» under the identifier “Key” and overwrites any data previously associated with
4 . Retrieve (Key), which returns the data associated with “Key” or “Nil”" if there

PROPERTIES OF UNIVERSAL CLASSES h mch data; and Delete (Key). One method of implementing an associative memory

~ es 2 hash function f and an array of size | B | of linked lists. Given a Store, Retneve
Let H be a class of functions from 4 to B. We say that H is universal, if for all g3 Dllll! request, f is applied to the given key. The resulting o L6 d "
in 4, 8y(x,v) < | H|/| B|. That is, H is universal, if no pair of distinct keys col ' - i list where the key and its associated data are to be stored. This list is searched
under more than (1/| B |)th of the functions. The subscript 2" 18 intended to emphasie’ R to determine if the key has been previously stored. See [1, p 111-113] for
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more details. In this associative memory system, the time required to perform an operstis ly 1. Proposition 3 then implies that the expected cost of processing a sequence
involving ﬂ:* key x is less than some linear function of the length of the list indessf’ ":.__' requests is linear in the number of requests. Notice that this linear bound holds
by f(x). If S is the set of keys which have been the subject of a Store, this list is of leag 8 for any sequence of requests, not just for the “average” sequence. Fagin, Nievergelt,
L -+ 8(x, 5). The next proposition calculates the expected length of this list. Ous i P ger and Strong [2] have developed an extendible hashing scheme which achieves
again, we emphasize that this result holds for any x and S, and that the average is omt '- linear time bound even when there is no estimate on | S |. Their system involves
the clags of hash functions. . Betle overhead, and only requires local remapping of data as | S | expands or contracts.
‘& Proposition 2 is helpful for other applications of hashing as well. For instance, an
PROPOSITION 2. Let x be any element of A and S any subset of A. Let f be a funch 8 ‘ptical character reader postprocessing system is described in [9]. This system is designed
chosen randomly from a universal, class of functions (with equal probabilities on the functiomd ‘@ check if a word x is a member of a set of valid words S. The set { f(y) |y € S} is
Then the mean value of §,(x, S) < | S|/| B|. " sored in memory. To test whether x is in S, a check is made to see if f(x) is in the stored
8 . Since f(y) is generally shorter than y, a considerable amount of space is saved.
P er, there is a chance of error; if f(x) = f(y) for some y € S, then x may erroneously

i H| f;H o,(x, ) __"'; accepted as valid.
. Proposition 2 gives a bound on the probability of error when f is chosen from a class
i universal, functions, and suggests that to achieve an error probability of less than p,
‘llhould let B have size | S |/p. To be precise, Proposition 2 says that if x and § are
I | H | _ 3 wﬁcd then a randomly chosen f will erroneously accept x with probability less than
= TH 3 B (by def. of universal,) f '!b. This is not the order of doing things which will occur in practice of course. First
e & fis chosen by the system designer, then x is input by the user. However, assuming
_ 15 . " h the user does not choose x based on any knowledge of the hash function chosen,

| B ﬁord:r of choice is immaterial to the probability.

& w: no not intend to imply that all functions in a universal, class are equally good:

g e S > _i: eivably there is a function which maps each input into the same element of .B
Ty quence X of requests. To make the notion of Pﬂrﬂ)m"“ " mad another which maps each element of S into one element of B and maps everything

precise, we define the cost of an individual request referring to the key x tobe 1 + 3,.(:, " aee into a different index. The first function would accept any x as valid, whereas the
where § is the set of previously inserted keys. The cost C(f, R) of the hash functiibIIIES 4 o 1d never make a inistake. What is gained by using a universal, class is the
on NE 18 tl;:c sum of the costs of the individual requests in the order specified by R. edge that if one has simply made a random choice of hash function frem such

ote that this cost function is appropriate only for an associative memory &ll there is a favorable probability that a given mistake will be caught. Intuitively,
uses a linked list collision resolution strategy. Other collision resolution schemes » saying that a universal, class contains enough good functions that a random choice
have other cost functions associated with them. For example, if the keys with the / I:ll:el gm be a good choice. In particular, we need not be concerned with statistics
mdexlwer; stored 1? a balanced tree, the corresponding cost function would be smallefs Bl freqt{en ol ufg English letter fnmbmatmm or with probable spelling errors.

it

““;; Yf "t cost of an individual request would be 1 + log(3(x, S)). l'ounmc applications of hashing, it is not enough to know that the average performance

e fo ]uw;ng theorem gives a nice bound on the expected linked-list-cost of ill be good. There may be some level of performance such that any worse performance
a universa fh ' :

2 class of hash functions. ld not be tolerated. For instance, in an online application, we may want some
E nce that no individual transaction will cost more than, say, ¢ times the expected
PROPOSITION 3. Let R be a sequence of r requests which includes k insertiom wot. The next proposition gives some assurance in this direction.

Suppose H is a universaly class of hash functions. Then if we choose f at random frnl i

Expected(C(f, R)) < r(1 + k/| B ). _;;';_'? yPoSITION 4. Let x€ A and SC A. Let p be the expected value of 8/x, S). (By
Proof. The expected cost of R is the sum of the expected costs of the individed position 2, u < | S |/| B |.) Choose f at random from a universal, collection of functions,

requests. Proposition 2 and the definition of cost tell us that an individual request b § Tln: the probability that 8,(x, S) > tu is less than 1/t.
expected cost no greater than 1 + k/| B|. |

Proof. Mean value of 8,(x, S) =

- l_fﬂ Z Su(x, v) (by notation)

It is not hard to extend this result to give the expected performance of our associatis

y ﬁwf The collection of numbers {8,(x, S)|fe H} has mean p but no negative
Oftﬂﬂ, an ﬂﬁtlmatﬂ for the number of items to be stored in an associative mes ' ; g Thua for Eﬁﬂh function with 31"(: S} ~ tﬂ-, t_hcre must be more than t — 1

is known. If so, one can choose | B |, the number of linked lists, so that k[| B | is appre U fenctions with 8,x, S) < u to keep the mean down to pu. ||
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Note that a similar argument shows that the probability that C(f, R) is greater tha Suppose 4 = {0, 1,...,.a — 1} and B = {0, 1,..., b — 1}. Let p be a prime with p > a
t times its expected cost is also less than 1/t T L £ be any function from Z, to B which, as closely as possible, maps the same number
| These are often not particularly useful bounds on the probability that a cost # & of elements of Z, into each element of B. Formally, we require |{y € Z, | g(y) =i} <
mtuleﬁmble. They can be improved by two methods. Firstly, a particular class of hat # fp/k | for all i € B. A natural choice for g is the residue modulo 5. When b = 2* for
fum:tmns can be analyzed in more detail. For instance, for the classes H, and H presented _- ';;' k, this amounts to taking the last % bits in the binary representation of y.
in the next section, Markowsky [7] has calculated bounds on the second and foush & * Let m and n be elements of Z, with m % 0. We define &,, ,: 4 — Z, by h,, .(x) =
moments of the set of costs. These are used to show that when | S |/| B | is about |, i + n) mod p. Now dehnef,,,.,,(x) = g(h,, .(x)). The class H, is the set {fm_,1 mneZ,
the probability that a cost (of a request or sequence of requests) is greater than s & ad m £ 0}
less than ]/¢* and also less than 1] /¢4 -' " The following lemma is useful in proving that this class is universal, .

A second way to insure that no cost will be intolerable is to change the collisis &
resolution strategy. For instance, suppose balanced trees ([1], pp. 145-152) are :-
in place of the linked lists mentioned earlier. When | S |/| B | is about 1, this maks &
a small improvement in the expected value of §,(x, S), and may not be worth the added
bookkeeping if one cares only about the average cost. However, using balanced tres
makes an exponential reduction in the probability that a request is intolerably expensive.
In order for a request involving the key x to require searching more than ¢ levels of the & “ ordered pair (h,, (%), A a(y)). Since m 5= 0 and x # y, Ay (%) 7= Ay o(¥). This
tree, 8,(x, S) would have to have at least 2! elements. Assuming | S /| B] =1, ts & " garrespondence is one-to-one and onto since for a fixed x, y, r and s, the linear equations
means that the probability of a request requiring more than ¢ steps is no more th §& # + n = r (mod p) and ym + n = s (mod p) have a unique solution for m and  in the
1/2%, and if f is chosen from H, or Hj, the probability is less than /24 4 .:: 1 Z, .

We conclude this section by showing that although our approach to hashing achieve £ H(" s) is the pair (A, 4(x), b, o(¥)), then fi, (%) = fin,a(¥) if and only if g(r) = g(s).
independence from the choice of input, it does not entail a poorer expected performane u(x,y) = 8(Z,,2Z,)- 1
than the traditional approach. More precisely, we show:

LIHMJ. 6. When H, is defined as above, then for any x,y € A with x +# y, 8y (%, y) =
W.- Z,).

Proaf There is a natural correspondence between the functions 4, ,, and the ordered
pairs (r, s) where 7, s€ Z, and r # s. Specifically, we associate the function A, , with

g 'horusleH 7. The class H, is universal, .

PROPOSITION 5. Given any single hash function, let E, be the expected cost with resped
to that function of a random request after k random insertions have been made. Let E, y
the expected cost (averaging over a universal, class of hash functions) of any request ofi
any k insertions have been made. Then E, = (1 — €) E, where ¢ —= | B ||| A |.

me et n; be the number of elements in {t€ Z, | g(t) = i}. g was chosen so that
#& < [ p/b] for each i. Since p and b are integers, [p/b] < ((p — 1)/b) + 1. Thus for a
n r € Z, , there are no more than (p — 1)/b choices for s such that r # s but g(r) =

). Since there are p choices for r, p(p — 1)/b = 3y (x, y). Recalling that for x = y,

Proof. Leta = |A|and b == | B|. Let S be the set of elements of A which o _ ("y ) = 0, this shows that 4, is umveraal i

inserted prior to the request on the element x. Proposition 2 implies that E, < 1 + | § ¥ If desired, p can be chosen so the mod p operation can be calculated without a division.
We will show that E, > 1 + | S|(1/b — 1/a), assuming that S and x were chosst §& For instance, suppose p = 2/ — | for some j, and x is expressible in 2j bits. Then there
randomly. A simple calculation then verifies that £, = (1 — b/a) E, . e 7 %, , %, < 2/ such that x = 2/x, + x,. x, is the j high order bits of the binary

In the proof of Proposition 1, it was shown that 8,4, 4) = a*(1/b — 1/a) fur t ssentation of x, and x, is the j low order bits. x = x, + x, (mod p), since 2/ = 1
hash function f. Thus if x and y are chosen at random from 4, then Expected (8/(x, y))= fmod p). Thus, the 25 bit number x can be reduced to a congruent j 4 | bit number
(1/a*) 8,4, A) = 1/b — 1/a. Recall that §,(x, S) = ¥ ,.58,(x, y). Since the expectat 3 ' performing a shift and an add operation. T'o get x (mod p), only a test and perhaps
of a sum is the sum of the individual expectations, Expected (8,(x, S)) = | S |(1/b — I ‘asubtract are needed. When one uses this method, and b is a power of two (so the mod b
Thus, E, = 1+ | S|(1/b — 1]a). |} “ B eperation can be implemented by taking the last bits), then computing a function from

‘% H, takes only one multiply and a few addition, shift and Boolean operations.

"It may seem that the addition of n in the class of functions given above plays an un-
mportant role. This is only partly true. Suppose for me Z, we define h,,(x) = mx
mod p), and as before define f,.(x) as g(hn(x)). Let H = {f,,|me Z, and m 5 0}.
R can be shown that this class of functions comes within a factor of two of being
, that is 84(x,y) < 2(| H|/| B|) for any x and y. On the other hand, this

i cannot be improved significantly. For instance, let b = | B |, and choose k so

SoME UNIVERSAL, CLASSES

The first class of universal, hash functions we present, H, , is suitable for applicat
where the bit strings which represent the keys can conveniently be multiplied by
computer.
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that p — kb + k-4 | is primu: (there will be infinitely many such k’s.) Let £(x) =g
(mod b). Let x — | and y = b { 1. It can be shown that the 2k functions f; ,f,, .,&
Jo-x+So-ri1 s fy 1 each map x and y to the same value. Thus, Oy(x, v) = 2k, _

: h H, 1s the set of linear transformations from 4 to B. More explicitly: Let 4 and B
hth sct of i-bit and j-bit binary numbers, respectively. Let M be the set of the arrays
; kength 1 whose clements are from B. (One can think of the arrays in M as i by
* Boolean matrices.) For m € M, let m(k) be the bit string which is the kth element of m,

. and for x€ A, let x, be the kth bit of x. We define f,,(x) = xm(1) ® x;m(2) @ - @
. amli). The class Hy is the set {f,, | me M}.

Eﬂ__p—l_kb}k.- I
B = =g = L)k

The universal, class H, may not be convenient when the keys are too long h‘

multiplied using a single machine instruction. However, the next proposition n
a method of extending a class of functions for long keys.

PIJHJEITIGN 9. The class Hy defined above is universal, .

{; k . Proof. 'The proof is by induction on / using Proposition 8.

" g 7 0. ‘  When 7 = |, we have 4 = {0, 1}, M = B, and for me B, £,,(0) = 0 and f,,(1) = m.
WORORITION uppose 5 = {0, 1,..., b — 1} where b is a power of two ﬂ”dﬂ' The condition of Proposition 8 is satisfied with r = 1/| H| since the only possible

class of functions from A to B with the pmpeﬂv that for some rfai number r, for each x, ye§' m for x and y are x = 0, y = | (or x = 1, y = 0), and for each £, f; is the only

with x + y, and for each i€ B, |{fe H f(x) @ f(y) = i}| <r| H|. (Recall that Qj mﬂ for which £,(0) ® f,(1) = i. l

the exclusive-or operation.) Define the class ] of hmhf""“'ﬂ"’fmm A X A to B as fol . Proposition 8 supplies the induction step. Thus the condition of Proposition § is

For . € H, defne Iy.{(53, %) = (52) O glos), and let [~ (hy, |1, g H). Thon foll

: 'ai'.f isficd for all ¢, and Hj is universal, . |

all x, ye A x A with x + v, and for all i€ B, | Hhe J| h(x) @ h(y) =1} < | J 4
- The class H; of hash functions presented below is similar to H,, but the functions
;H, require less time and more space. This is accomplished by first mapping the key
{0 a longer bit string, but one with fewer 1’s. Specifically, suppose 4 can be viewed
@ the set of /-digit numbers written in base «. For x € 4, let x, denote the kth digit
"l x. Define g to be the function which maps x into the bit string of length ix which
hlsm positions x; + 1, %, + 2, + 1, 2, + x5 + x5+ 1, etc. Then | 4| = of and
S iB| = 2. If H, is the class defined above for ia-bit keys, then H, = {fg | fe H,}.
'lh fact that H, is universaly follows immediately from the facts that g is | to 1 and H,
" @universal, .
... We would like to emphasize that the hash functions described in this section are fast.
instance, the class H, extended by the technique of Proposition 8 has been im-
sented using the IBM 360 instruction set [10]. This code requires about 4 fast

ctions per byte of key. Thus, there is not a time penalty associated with using
ersal, hash functions.

Proof. Given x,ye 4 x A with x # y, write x — (¥;,%x) and vy ={yl,
Without loss of generality, we may assume that x; # ¥, (otherwise, mttn:hangc .
subscripts 1 and 2 in the following.) Given i€ B,

the J1hx) @ h(y) =i}l = {f,g € H | f(%,) D glxs) Df(3:) D e(rs) =i}l |
= L H/eH|f(x) ©f(3) = i ®gxs) De(ral.

ueEH

The hypothesis implies that each term of this summation is bounded by r | H|.

{heJ | hx) Dh(y) =i} <r|H2=7r|]J| |

Proposition 8 can be used to produce universal, classes which work on long kewt
Suppose H is a class of functions which can be apphud to keys of length « and H satisha e _
the condition of the proposition with » = 1/| B |. Then the resulting J is a clu
functions which can be applied to keys of length 2a. Furthermore, J 18 universll S
To see this, notice that if x £y, r|J| = |{he ]| h(x) ® h(y) = 0}| = 3,[;
Repeated application of Proposition 8 allows us to extend the functions to arbit
long keys. Notice that if the functions in H can be applied in constant time, then fe
time required to compute an extended function is proportional to the length of the ket ";=:1 next two theorems summarize the results proved in this paper which we believe

If we apply Proposition 8 to the class H, defined earlier, we do not quite get a unive of practical and theoretical importance. Frequently, algorithms are analyzed making
class. This is because the smallest r which satisfies the condition of the propositiesiil. 3¢ assumption that multiplications and other basic operations take unit time. The
18 somewhere between 1/| B | and (1/| B|)(1 + (| B|+ )/(p — 1)). In most applig mber of such operations is said to be the cost of the algorithm.
tions, | B | is very small compared to p, so the results of the theorems of this puelt
are true “within e.”” Alternatively, one could modify the definition of H, to allowy
to equal 0. The resulting class is still universal, , and Proposition 8 applies with r = 1/| B

The following universal, class of functions—denoted H, for historical reasc
does not require multiplication and may be better for many applications. Essenti
if one considers the elements of 4 and B to be vectors over the field of two eleme

IMPORTANCE

Df'llﬂilllﬁ:rm'l 10. Using a standard model of computation, where multiplication, choosing
rlldnm numbers, and memory references take unit time, any sequence of r requests to an
gmociative memory can be processed in expected time O(r).

7,
-

' Proof. Proposition 3 implies that when a universal, class of hash functions is used
and | B| is chosen approximately equal to r, then the expected number of memory

u'-.'-ﬁ_u_.._.’...r._'l -

iy Vb

L
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references per request is less than 2 when averaged over all functions in the class. "% does not matter which particular set of keys are generated by the algorithm. We give
this model a member in the class H, may be chosen and may be applied to each o th wo examples of algorithms which benefit from our approach.
requests in constant time. | - Rabin [8] has developed an algorithm which finds the nearest neighbors of a collection
4 of points in a plane, given the coordinates of the points. This algorithm involves making
2 mndom choice of points, and it uses hashing. If one also randomly chooses the hash
huon from a universal, class, then the expected running time of the algorithm will
R _ ‘ _ r *Iy: be linear in the number of points.
1 HEOREM 1. Using a standard model, where Boolean D_Pfr.ﬂﬂuﬂs on machine add [4] and [5] an algorithm is suggested for multiplying sparse polynomials, using
::aj:r:isﬁgﬂim:w r::ﬂmrbers, a:j mﬁmﬂr‘vdrffﬂmes:jkf.Hm;.“mf’ fmy;eqnen;: of rep i:- . We can strengthen the results of these papers. Assume scalar multiplication
o~ ’ Y can De processed in expected lime linear in the numoer of bkin ﬂ lddll'lﬂn take constant time. The following algorithm can multiply two polynomials
' P-d Q with n and m non-zero terms, respectively, in average time O(nm). Let CP,,
'CP, ey CP, be the coefficients of the n terms of P. Let EP,, EP,,..., EP, be the
-pnmta of those terms. Let CQ, and EQ, stand for the same quantities of Q. Store
Retrieve are the associative memory operations introduced earlier, and are 1m-
sented using a universal, class of hash functions. If a value has not been stored
sly for a given key, a Retrieve will return zero.
% . Choose a hash function;

If keys are too long, this model is unrealistic and we must discard the assumps
that multiplication takes unit time. We can also show:

Proof. Use class H, or Hy . |}

There are several ways in which universal hash functions are of practical import
In many applications, it is quite easy to change the hash function each time a prog
18 run. This makes it mathematically certain that the linear time bounds of Theorems
and 11 are achieved. This is true even if the program is run on different data each tim
provided that the choice of hash function is independent (in the probabilistic
of the data. This will be the case if the hash function is chosen randomly after the d . :

- Fori:=1tondo

is established. Tl
For other applications of hashing, it may be awkward to change the hash functis 0F8 ] =110, a0

T A
s
4
[
ha
»

frequently. For instance, changing the hash function in a large database system we g : H

. : : : ; k = Retrieve (EP; 4 EQy;);
require moving a large amount of data to new locations. In this case, there are sevesf
: strategies one could employ. The simplest is to once and for all randomly cf Store (EP, + EQ;, K + CFP, x CQ)) h
*. a hash function from a universal, class. The expected time required by the s < End; i ik
s memory subroutine of the application will be linear in the number of requests. Furt . Print all keys and values which have been stored; £

¥ L
et e e, T

*. End;

:r-f: addition and multiplication are viewed as taking constant time, the first class
‘of functions we presented seems appropriate for this analysis.

more, Proposition 4 and reference [7] give some bounds on the probability that the actulg
time required is significantly greater than the expected time. A second strategy i'
occasionally observe how many collisions were occurring, and change the hash
: if there were significantly more than expected. This strategy makes good perform
) certain, again assuming the choice of hash function and the data are independent
A third value of a universal, class of functions is that one can be sure that that®®

FUTURE RESEARCH

k are many acceptable functions in the class. Programmers sometimes spend a ¢
5 | siderable amount of time searching for a hash function which will perform wﬂ

. ',';:- | ; : their test data ([6], p. 508-513). This search time can be reduced by simply t (1) Improve the bounds cited here on the probability that a particular function
- out a few functions chosen randomly from a universal, class. H: or Hy will perform poorly on a particular input,

The theoretical importance of universal, classes is that they allow one to get a got m Extind the analysis to other sto and retrieval algorit] Sl el

bound on the average performance of an algorithm which uses hashing. The probles b , such as double hashing and open addressing.

with an ordinary hashing scheme is that the algorithmm might tend to make i : .
involving a particular subset of the keys, and these favored keys may be distrib e (3} When should one decide that a particular function is a poor choice and it
Y i be worth the effort to choose a new function and rehash ¢

unevenly by the particular hash function being used. There is often a complicai
interaction between the inputs to the algorithm and the keys the algorithm requ - (4) What is the minimum number of bits necessary to specify a function from

.,'I'

to be hashed. This interaction makes the average performance of such an algoritha® niversal, class 7 One class not discussed in this paper is close to being universal,
difficult to determine. However, if one uses a universal, class of hash functions, tha @ gad requires log(log | 4 |) log(| B [) bits.

;: :}Th:m are a number of areas which can be investigated, such as:
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